Ivan Alfaro

Chile
1 mil seguidores Más de 500 os

Unirse para ver el perfil

Acerca de

Ph.D. level scientist with a strong background and expertise in biochemistry, cell…

Actividad

Unirse para ver toda la actividad

Experiencia y educación

  • Universidad del Desarrollo

Mira la experiencia completa de Ivan

Mira su cargo, antigüedad y más

o

Al hacer clic en «Continuar» para unirte o iniciar sesión, aceptas las Condiciones de uso, la Política de privacidad y la Política de cookies de LinkedIn.

Licencias y certificaciones

Experiencia de voluntariado

  • Director

    Didacticiencia

    - actualidad 11 años 3 meses

    Educación

Publicaciones

  • Targeting prostate cancer with compounds possessing dual activity as androgen receptor antagonists and HDAC6 inhibitors

    Bioorg Med Chem Lett. 2016 Nov 1;26(21):5222-5228

    While enzalutamide and abiraterone are approved for treatment of metastatic castration-resistant prostate cancer (mCRPC), approximately 20-40% of patients have no response to these agents. It has been stipulated that the lack of response and the development of secondary resistance to these drugs may be due to the presence of AR splice variants. HDAC6 has a role in regulating the androgen receptor (AR) by modulating heat shock protein 90 (Hsp90) acetylation, which controls the nuclear…

    While enzalutamide and abiraterone are approved for treatment of metastatic castration-resistant prostate cancer (mCRPC), approximately 20-40% of patients have no response to these agents. It has been stipulated that the lack of response and the development of secondary resistance to these drugs may be due to the presence of AR splice variants. HDAC6 has a role in regulating the androgen receptor (AR) by modulating heat shock protein 90 (Hsp90) acetylation, which controls the nuclear localization and activation of the AR in androgen-dependent and independent scenarios. With dual-acting AR-HDAC6 inhibitors it should be possible to target patients who don't respond to enzalutamide. Herein, we describe the design, synthesis and biological evaluation of dual-acting compounds which target AR and are also specific towards HDAC6. Our efforts led to compound 10 which was found to have potent dual activity (HDAC6 IC50=0.0356μM and AR binding IC50=<0.03μM). Compound 10 was further evaluated for antagonist and other cell-based activities, in vitro stability and pharmacokinetics.
    Copyright © 2016 Elsevier Ltd. All rights reserved.

    Otros autores
    Ver publicación
  • The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons

    Molecular and Cellular Neuroscience

    Wnt signaling regulates synaptic development and function and contributes to the fine-tuning of the molecular and morphological differentiation of synapses. We have shown previously that Wnt5a activates non-canonical Wnt signaling to stimulate postsynaptic differentiation in excitatory hippocampal neurons promoting the clustering of the postsynaptic scaffold protein PSD-95 and the development of dendritic spines. At least three different kinds of Wnt receptors have been associated with Wnt5a…

    Wnt signaling regulates synaptic development and function and contributes to the fine-tuning of the molecular and morphological differentiation of synapses. We have shown previously that Wnt5a activates non-canonical Wnt signaling to stimulate postsynaptic differentiation in excitatory hippocampal neurons promoting the clustering of the postsynaptic scaffold protein PSD-95 and the development of dendritic spines. At least three different kinds of Wnt receptors have been associated with Wnt5a signaling: seven trans-membrane Frizzled receptors and the tyrosine kinase receptors Ryk and ROR2. We report here that ROR2 is distributed in the dendrites of hippocampal neurons in close proximity to synaptic s and it is contained in dendritic spine protrusions. We demonstrate that ROR2 is necessary to maintain dendritic spine number and morphological distribution in cultured hippocampal neurons. ROR2 overexpression increased dendritic spine growth without affecting the density of dendritic spine protrusions in a form dependent on its extracellular Wnt binding cysteine rich domain (CRD) and kinase domain. Overexpression of dominant negative ROR2 lacking the extracellular CRD, decreased spine density and the proportion of mushroom like spines, while ROR2 lacking the C-terminal and active kinase domains only affected spine morphology. Our results indicate a crucial role of the ROR2 in the formation and maturation of the postsynaptic dendritic spines in hippocampal neurons.

    Otros autores
    Ver publicación

Idiomas

  • Inglés

    -

Más actividad de Ivan

Ver el perfil completo de Ivan

  • Descubrir a quién conocéis en común
  • Conseguir una presentación
  • ar con Ivan directamente
Unirse para ver el perfil completo

Perfiles similares

Otras personas con el nombre de Ivan Alfaro en Chile

Añade nuevas aptitudes con estos cursos