São Paulo y alrededores
2 mil seguidores Más de 500 os

Unirse para ver el perfil

Actividad

Unirse para ver toda la actividad

Experiencia y educación

  • Luizalabs

Mira la experiencia completa de Thais

Mira su cargo, antigüedad y más

o

Al hacer clic en «Continuar» para unirte o iniciar sesión, aceptas las Condiciones de uso, la Política de privacidad y la Política de cookies de LinkedIn.

Experiencia de voluntariado

  • Voluntária

    Projeto Brincar - Hospital das Clínicas de Ribeirão Preto

    - 9 mes

    Infancia

    Projeto social junto à crianças aguardando tratamento no Hospital das Clínicas de Ribeirão Preto.

Publicaciones

  • How Many Trees in a Random Forest?

    8th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2012

    Random Forest is a computationally efficient technique that can operate quickly over large datasets. It has been used in many recent research projects and real-world applications in diverse domains. However, the associated literature provides almost no directions about how many trees should be used to compose a Random Forest. The research reported here analyzes whether there is an optimal number of trees within a Random Forest, i.e., a threshold from which increasing the number of trees would…

    Random Forest is a computationally efficient technique that can operate quickly over large datasets. It has been used in many recent research projects and real-world applications in diverse domains. However, the associated literature provides almost no directions about how many trees should be used to compose a Random Forest. The research reported here analyzes whether there is an optimal number of trees within a Random Forest, i.e., a threshold from which increasing the number of trees would bring no significant performance gain, and would only increase the computational cost. Our main conclusions are: as the number of trees grows, it does not always mean the performance of the forest is significantly better than previous forests (fewer trees), and doubling the number of trees is worthless. It is also possible to state there is a threshold beyond which there is no significant gain, unless a huge computational environment is available. In addition, it was found an experimental relationship for the AUC gain when doubling the number of trees in any forest. Furthermore, as the number of trees grows, the full set of attributes tend to be used within a Random Forest, which may not be interesting in the biomedical domain. Additionally, datasets’ density-based metrics proposed here probably capture some aspects of the VC dimension on decision trees and low-density datasets may require large capacity machines whilst the opposite also seems to be true.

    Otros autores
    • Jose Augusto Baranauskas
    • Pedro Santoro Perez
    Ver publicación
  • Root Attribute Behavior within a Random Forest

    13th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2012)

    Random Forest is a computationally efficient technique that can operate quickly over large datasets. It has been used in many recent research projects and real-world applications in diverse domains. However, the associated literature provides few information about what happens in the trees within a Random Forest. The research reported here analyzes the frequency that an attribute appears in the root node in a Random Forest in order to find out if it uses all attributes with equal frequency or…

    Random Forest is a computationally efficient technique that can operate quickly over large datasets. It has been used in many recent research projects and real-world applications in diverse domains. However, the associated literature provides few information about what happens in the trees within a Random Forest. The research reported here analyzes the frequency that an attribute appears in the root node in a Random Forest in order to find out if it uses all attributes with equal frequency or if there is some of them most used. Additionally, we have also analyzed the estimated out-of-bag error of the trees aiming to check if the most used attributes present a good performance. Furthermore, we have analyzed if the use of pre-pruning could influence the performance of the Random Forest using out-of-bag errors. Our main conclusions are that the frequency of the attributes in the root node has an exponential behavior. In addition, the use of the estimated out-of-bag error can help to find relevant attributes within the forest. Concerning to the use of pre-pruning, it was observed the execution time can be faster, without significant loss of performance.

    Otros autores
    • Jose Augusto Baranauskas
    Ver publicación
  • Avaliação da Identificação do Sexo de Pessoas Não-Identificadas por meio de Radiografias Faciais com o uso de Métodos de Aprendizado de Máquina.

    XXX Congresso da Sociedade Brasileira de Computação

    A identificação corresponde ao conjunto de procedimentos diversos para individualizar uma pessoa ou objeto. O processo de identificação de indivíduos por comparação manual radiográfica é um processo muito lento e que exige altos níveis de habilidade e precisão por parte do especialista humano. O emprego de sistemas computacionais para auxiliar o processo de identificação pode tornar esse processo mais rápido e prático. Assim, neste trabalho visa-se, com a utilização de medidas obtidas a partir…

    A identificação corresponde ao conjunto de procedimentos diversos para individualizar uma pessoa ou objeto. O processo de identificação de indivíduos por comparação manual radiográfica é um processo muito lento e que exige altos níveis de habilidade e precisão por parte do especialista humano. O emprego de sistemas computacionais para auxiliar o processo de identificação pode tornar esse processo mais rápido e prático. Assim, neste trabalho visa-se, com a utilização de medidas obtidas a partir de radiografias dos seios frontais humanos, utilizar métodos e técnicas de Aprendizado de Máquina para verificar se é possível estabelecer padrões entre os sexos, auxiliando assim, o processo de identificação, por meio de medidas propostas em literatura específica da área. Os resultados indicam que as medidas propostas são mais adequadas para especialização do que para generalização.

    Otros autores
    • Jose Augusto Baranauskas
    • Suzana Carvalho
    • Arsenio Peres
    • Renato Tinos
    • Ricardo Henrique Alves da Silva
    Ver publicación

Cursos

  • Big Nerd Ranch - Beginning iOS (iPhone/iPad) with Swift

    -

  • ScrumMaster - Scrum Alliance

    -

Idiomas

  • Inglês

    Competencia profesional completa

Más actividad de Thais

Ver el perfil completo de Thais

  • Descubrir a quién conocéis en común
  • Conseguir una presentación
  • ar con Thais directamente
Unirse para ver el perfil completo

Perfiles similares

Otras personas con el nombre de Thais Oshiro en Brasil

Añade nuevas aptitudes con estos cursos